3.1.72 \(\int \frac {(e \sin (c+d x))^{3/2}}{(a+b \cos (c+d x))^2} \, dx\) [72]

Optimal. Leaf size=418 \[ \frac {a e^{3/2} \text {ArcTan}\left (\frac {\sqrt {b} \sqrt {e \sin (c+d x)}}{\sqrt [4]{-a^2+b^2} \sqrt {e}}\right )}{2 b^{3/2} \left (-a^2+b^2\right )^{3/4} d}+\frac {a e^{3/2} \tanh ^{-1}\left (\frac {\sqrt {b} \sqrt {e \sin (c+d x)}}{\sqrt [4]{-a^2+b^2} \sqrt {e}}\right )}{2 b^{3/2} \left (-a^2+b^2\right )^{3/4} d}-\frac {e^2 F\left (\left .\frac {1}{2} \left (c-\frac {\pi }{2}+d x\right )\right |2\right ) \sqrt {\sin (c+d x)}}{b^2 d \sqrt {e \sin (c+d x)}}+\frac {a^2 e^2 \Pi \left (\frac {2 b}{b-\sqrt {-a^2+b^2}};\left .\frac {1}{2} \left (c-\frac {\pi }{2}+d x\right )\right |2\right ) \sqrt {\sin (c+d x)}}{2 b^2 \left (a^2-b \left (b-\sqrt {-a^2+b^2}\right )\right ) d \sqrt {e \sin (c+d x)}}+\frac {a^2 e^2 \Pi \left (\frac {2 b}{b+\sqrt {-a^2+b^2}};\left .\frac {1}{2} \left (c-\frac {\pi }{2}+d x\right )\right |2\right ) \sqrt {\sin (c+d x)}}{2 b^2 \left (a^2-b \left (b+\sqrt {-a^2+b^2}\right )\right ) d \sqrt {e \sin (c+d x)}}+\frac {e \sqrt {e \sin (c+d x)}}{b d (a+b \cos (c+d x))} \]

[Out]

1/2*a*e^(3/2)*arctan(b^(1/2)*(e*sin(d*x+c))^(1/2)/(-a^2+b^2)^(1/4)/e^(1/2))/b^(3/2)/(-a^2+b^2)^(3/4)/d+1/2*a*e
^(3/2)*arctanh(b^(1/2)*(e*sin(d*x+c))^(1/2)/(-a^2+b^2)^(1/4)/e^(1/2))/b^(3/2)/(-a^2+b^2)^(3/4)/d+e^2*(sin(1/2*
c+1/4*Pi+1/2*d*x)^2)^(1/2)/sin(1/2*c+1/4*Pi+1/2*d*x)*EllipticF(cos(1/2*c+1/4*Pi+1/2*d*x),2^(1/2))*sin(d*x+c)^(
1/2)/b^2/d/(e*sin(d*x+c))^(1/2)-1/2*a^2*e^2*(sin(1/2*c+1/4*Pi+1/2*d*x)^2)^(1/2)/sin(1/2*c+1/4*Pi+1/2*d*x)*Elli
pticPi(cos(1/2*c+1/4*Pi+1/2*d*x),2*b/(b-(-a^2+b^2)^(1/2)),2^(1/2))*sin(d*x+c)^(1/2)/b^2/d/(a^2-b*(b-(-a^2+b^2)
^(1/2)))/(e*sin(d*x+c))^(1/2)-1/2*a^2*e^2*(sin(1/2*c+1/4*Pi+1/2*d*x)^2)^(1/2)/sin(1/2*c+1/4*Pi+1/2*d*x)*Ellipt
icPi(cos(1/2*c+1/4*Pi+1/2*d*x),2*b/(b+(-a^2+b^2)^(1/2)),2^(1/2))*sin(d*x+c)^(1/2)/b^2/d/(a^2-b*(b+(-a^2+b^2)^(
1/2)))/(e*sin(d*x+c))^(1/2)+e*(e*sin(d*x+c))^(1/2)/b/d/(a+b*cos(d*x+c))

________________________________________________________________________________________

Rubi [A]
time = 0.58, antiderivative size = 418, normalized size of antiderivative = 1.00, number of steps used = 13, number of rules used = 11, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.440, Rules used = {2772, 2946, 2721, 2720, 2781, 2886, 2884, 335, 218, 214, 211} \begin {gather*} \frac {a e^{3/2} \text {ArcTan}\left (\frac {\sqrt {b} \sqrt {e \sin (c+d x)}}{\sqrt {e} \sqrt [4]{b^2-a^2}}\right )}{2 b^{3/2} d \left (b^2-a^2\right )^{3/4}}+\frac {a^2 e^2 \sqrt {\sin (c+d x)} \Pi \left (\frac {2 b}{b-\sqrt {b^2-a^2}};\left .\frac {1}{2} \left (c+d x-\frac {\pi }{2}\right )\right |2\right )}{2 b^2 d \left (a^2-b \left (b-\sqrt {b^2-a^2}\right )\right ) \sqrt {e \sin (c+d x)}}+\frac {a^2 e^2 \sqrt {\sin (c+d x)} \Pi \left (\frac {2 b}{b+\sqrt {b^2-a^2}};\left .\frac {1}{2} \left (c+d x-\frac {\pi }{2}\right )\right |2\right )}{2 b^2 d \left (a^2-b \left (\sqrt {b^2-a^2}+b\right )\right ) \sqrt {e \sin (c+d x)}}+\frac {a e^{3/2} \tanh ^{-1}\left (\frac {\sqrt {b} \sqrt {e \sin (c+d x)}}{\sqrt {e} \sqrt [4]{b^2-a^2}}\right )}{2 b^{3/2} d \left (b^2-a^2\right )^{3/4}}+\frac {e \sqrt {e \sin (c+d x)}}{b d (a+b \cos (c+d x))}-\frac {e^2 \sqrt {\sin (c+d x)} F\left (\left .\frac {1}{2} \left (c+d x-\frac {\pi }{2}\right )\right |2\right )}{b^2 d \sqrt {e \sin (c+d x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(e*Sin[c + d*x])^(3/2)/(a + b*Cos[c + d*x])^2,x]

[Out]

(a*e^(3/2)*ArcTan[(Sqrt[b]*Sqrt[e*Sin[c + d*x]])/((-a^2 + b^2)^(1/4)*Sqrt[e])])/(2*b^(3/2)*(-a^2 + b^2)^(3/4)*
d) + (a*e^(3/2)*ArcTanh[(Sqrt[b]*Sqrt[e*Sin[c + d*x]])/((-a^2 + b^2)^(1/4)*Sqrt[e])])/(2*b^(3/2)*(-a^2 + b^2)^
(3/4)*d) - (e^2*EllipticF[(c - Pi/2 + d*x)/2, 2]*Sqrt[Sin[c + d*x]])/(b^2*d*Sqrt[e*Sin[c + d*x]]) + (a^2*e^2*E
llipticPi[(2*b)/(b - Sqrt[-a^2 + b^2]), (c - Pi/2 + d*x)/2, 2]*Sqrt[Sin[c + d*x]])/(2*b^2*(a^2 - b*(b - Sqrt[-
a^2 + b^2]))*d*Sqrt[e*Sin[c + d*x]]) + (a^2*e^2*EllipticPi[(2*b)/(b + Sqrt[-a^2 + b^2]), (c - Pi/2 + d*x)/2, 2
]*Sqrt[Sin[c + d*x]])/(2*b^2*(a^2 - b*(b + Sqrt[-a^2 + b^2]))*d*Sqrt[e*Sin[c + d*x]]) + (e*Sqrt[e*Sin[c + d*x]
])/(b*d*(a + b*Cos[c + d*x]))

Rule 211

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/Rt[a/b, 2]], x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 218

Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[-a/b, 2]], s = Denominator[Rt[-a/b, 2]]},
Dist[r/(2*a), Int[1/(r - s*x^2), x], x] + Dist[r/(2*a), Int[1/(r + s*x^2), x], x]] /; FreeQ[{a, b}, x] &&  !Gt
Q[a/b, 0]

Rule 335

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + b*(x^(k*n)/c^n))^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 2721

Int[((b_)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Dist[(b*Sin[c + d*x])^n/Sin[c + d*x]^n, Int[Sin[c + d*x]
^n, x], x] /; FreeQ[{b, c, d}, x] && LtQ[-1, n, 1] && IntegerQ[2*n]

Rule 2772

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Simp[g*(g*C
os[e + f*x])^(p - 1)*((a + b*Sin[e + f*x])^(m + 1)/(b*f*(m + 1))), x] + Dist[g^2*((p - 1)/(b*(m + 1))), Int[(g
*Cos[e + f*x])^(p - 2)*(a + b*Sin[e + f*x])^(m + 1)*Sin[e + f*x], x], x] /; FreeQ[{a, b, e, f, g}, x] && NeQ[a
^2 - b^2, 0] && LtQ[m, -1] && GtQ[p, 1] && IntegersQ[2*m, 2*p]

Rule 2781

Int[1/(Sqrt[cos[(e_.) + (f_.)*(x_)]*(g_.)]*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])), x_Symbol] :> With[{q = Rt[
-a^2 + b^2, 2]}, Dist[-a/(2*q), Int[1/(Sqrt[g*Cos[e + f*x]]*(q + b*Cos[e + f*x])), x], x] + (Dist[b*(g/f), Sub
st[Int[1/(Sqrt[x]*(g^2*(a^2 - b^2) + b^2*x^2)), x], x, g*Cos[e + f*x]], x] - Dist[a/(2*q), Int[1/(Sqrt[g*Cos[e
 + f*x]]*(q - b*Cos[e + f*x])), x], x])] /; FreeQ[{a, b, e, f, g}, x] && NeQ[a^2 - b^2, 0]

Rule 2884

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp
[(2/(f*(a + b)*Sqrt[c + d]))*EllipticPi[2*(b/(a + b)), (1/2)*(e - Pi/2 + f*x), 2*(d/(c + d))], x] /; FreeQ[{a,
 b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[c + d, 0]

Rule 2886

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Dist
[Sqrt[(c + d*Sin[e + f*x])/(c + d)]/Sqrt[c + d*Sin[e + f*x]], Int[1/((a + b*Sin[e + f*x])*Sqrt[c/(c + d) + (d/
(c + d))*Sin[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && N
eQ[c^2 - d^2, 0] &&  !GtQ[c + d, 0]

Rule 2946

Int[((cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]))/((a_) + (b_.)*sin[(e_.) + (
f_.)*(x_)]), x_Symbol] :> Dist[d/b, Int[(g*Cos[e + f*x])^p, x], x] + Dist[(b*c - a*d)/b, Int[(g*Cos[e + f*x])^
p/(a + b*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] && NeQ[a^2 - b^2, 0]

Rubi steps

\begin {align*} \int \frac {(e \sin (c+d x))^{3/2}}{(a+b \cos (c+d x))^2} \, dx &=\frac {e \sqrt {e \sin (c+d x)}}{b d (a+b \cos (c+d x))}-\frac {e^2 \int \frac {\cos (c+d x)}{(a+b \cos (c+d x)) \sqrt {e \sin (c+d x)}} \, dx}{2 b}\\ &=\frac {e \sqrt {e \sin (c+d x)}}{b d (a+b \cos (c+d x))}-\frac {e^2 \int \frac {1}{\sqrt {e \sin (c+d x)}} \, dx}{2 b^2}+\frac {\left (a e^2\right ) \int \frac {1}{(a+b \cos (c+d x)) \sqrt {e \sin (c+d x)}} \, dx}{2 b^2}\\ &=\frac {e \sqrt {e \sin (c+d x)}}{b d (a+b \cos (c+d x))}-\frac {\left (a^2 e^2\right ) \int \frac {1}{\sqrt {e \sin (c+d x)} \left (\sqrt {-a^2+b^2}-b \sin (c+d x)\right )} \, dx}{4 b^2 \sqrt {-a^2+b^2}}-\frac {\left (a^2 e^2\right ) \int \frac {1}{\sqrt {e \sin (c+d x)} \left (\sqrt {-a^2+b^2}+b \sin (c+d x)\right )} \, dx}{4 b^2 \sqrt {-a^2+b^2}}-\frac {\left (a e^3\right ) \text {Subst}\left (\int \frac {1}{\sqrt {x} \left (\left (a^2-b^2\right ) e^2+b^2 x^2\right )} \, dx,x,e \sin (c+d x)\right )}{2 b d}-\frac {\left (e^2 \sqrt {\sin (c+d x)}\right ) \int \frac {1}{\sqrt {\sin (c+d x)}} \, dx}{2 b^2 \sqrt {e \sin (c+d x)}}\\ &=-\frac {e^2 F\left (\left .\frac {1}{2} \left (c-\frac {\pi }{2}+d x\right )\right |2\right ) \sqrt {\sin (c+d x)}}{b^2 d \sqrt {e \sin (c+d x)}}+\frac {e \sqrt {e \sin (c+d x)}}{b d (a+b \cos (c+d x))}-\frac {\left (a e^3\right ) \text {Subst}\left (\int \frac {1}{\left (a^2-b^2\right ) e^2+b^2 x^4} \, dx,x,\sqrt {e \sin (c+d x)}\right )}{b d}-\frac {\left (a^2 e^2 \sqrt {\sin (c+d x)}\right ) \int \frac {1}{\sqrt {\sin (c+d x)} \left (\sqrt {-a^2+b^2}-b \sin (c+d x)\right )} \, dx}{4 b^2 \sqrt {-a^2+b^2} \sqrt {e \sin (c+d x)}}-\frac {\left (a^2 e^2 \sqrt {\sin (c+d x)}\right ) \int \frac {1}{\sqrt {\sin (c+d x)} \left (\sqrt {-a^2+b^2}+b \sin (c+d x)\right )} \, dx}{4 b^2 \sqrt {-a^2+b^2} \sqrt {e \sin (c+d x)}}\\ &=-\frac {e^2 F\left (\left .\frac {1}{2} \left (c-\frac {\pi }{2}+d x\right )\right |2\right ) \sqrt {\sin (c+d x)}}{b^2 d \sqrt {e \sin (c+d x)}}+\frac {a^2 e^2 \Pi \left (\frac {2 b}{b-\sqrt {-a^2+b^2}};\left .\frac {1}{2} \left (c-\frac {\pi }{2}+d x\right )\right |2\right ) \sqrt {\sin (c+d x)}}{2 b^2 \left (a^2-b \left (b-\sqrt {-a^2+b^2}\right )\right ) d \sqrt {e \sin (c+d x)}}-\frac {a^2 e^2 \Pi \left (\frac {2 b}{b+\sqrt {-a^2+b^2}};\left .\frac {1}{2} \left (c-\frac {\pi }{2}+d x\right )\right |2\right ) \sqrt {\sin (c+d x)}}{2 b^2 \sqrt {-a^2+b^2} \left (b+\sqrt {-a^2+b^2}\right ) d \sqrt {e \sin (c+d x)}}+\frac {e \sqrt {e \sin (c+d x)}}{b d (a+b \cos (c+d x))}+\frac {\left (a e^2\right ) \text {Subst}\left (\int \frac {1}{\sqrt {-a^2+b^2} e-b x^2} \, dx,x,\sqrt {e \sin (c+d x)}\right )}{2 b \sqrt {-a^2+b^2} d}+\frac {\left (a e^2\right ) \text {Subst}\left (\int \frac {1}{\sqrt {-a^2+b^2} e+b x^2} \, dx,x,\sqrt {e \sin (c+d x)}\right )}{2 b \sqrt {-a^2+b^2} d}\\ &=\frac {a e^{3/2} \tan ^{-1}\left (\frac {\sqrt {b} \sqrt {e \sin (c+d x)}}{\sqrt [4]{-a^2+b^2} \sqrt {e}}\right )}{2 b^{3/2} \left (-a^2+b^2\right )^{3/4} d}+\frac {a e^{3/2} \tanh ^{-1}\left (\frac {\sqrt {b} \sqrt {e \sin (c+d x)}}{\sqrt [4]{-a^2+b^2} \sqrt {e}}\right )}{2 b^{3/2} \left (-a^2+b^2\right )^{3/4} d}-\frac {e^2 F\left (\left .\frac {1}{2} \left (c-\frac {\pi }{2}+d x\right )\right |2\right ) \sqrt {\sin (c+d x)}}{b^2 d \sqrt {e \sin (c+d x)}}+\frac {a^2 e^2 \Pi \left (\frac {2 b}{b-\sqrt {-a^2+b^2}};\left .\frac {1}{2} \left (c-\frac {\pi }{2}+d x\right )\right |2\right ) \sqrt {\sin (c+d x)}}{2 b^2 \left (a^2-b \left (b-\sqrt {-a^2+b^2}\right )\right ) d \sqrt {e \sin (c+d x)}}-\frac {a^2 e^2 \Pi \left (\frac {2 b}{b+\sqrt {-a^2+b^2}};\left .\frac {1}{2} \left (c-\frac {\pi }{2}+d x\right )\right |2\right ) \sqrt {\sin (c+d x)}}{2 b^2 \sqrt {-a^2+b^2} \left (b+\sqrt {-a^2+b^2}\right ) d \sqrt {e \sin (c+d x)}}+\frac {e \sqrt {e \sin (c+d x)}}{b d (a+b \cos (c+d x))}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 6 vs. order 4 in optimal.
time = 19.53, size = 614, normalized size = 1.47 \begin {gather*} \frac {\csc (c+d x) (e \sin (c+d x))^{3/2}}{b d (a+b \cos (c+d x))}-\frac {\cos ^2(c+d x) (e \sin (c+d x))^{3/2} \left (a+b \sqrt {1-\sin ^2(c+d x)}\right ) \left (\frac {a \left (-2 \text {ArcTan}\left (1-\frac {\sqrt {2} \sqrt {b} \sqrt {\sin (c+d x)}}{\sqrt [4]{a^2-b^2}}\right )+2 \text {ArcTan}\left (1+\frac {\sqrt {2} \sqrt {b} \sqrt {\sin (c+d x)}}{\sqrt [4]{a^2-b^2}}\right )-\log \left (\sqrt {a^2-b^2}-\sqrt {2} \sqrt {b} \sqrt [4]{a^2-b^2} \sqrt {\sin (c+d x)}+b \sin (c+d x)\right )+\log \left (\sqrt {a^2-b^2}+\sqrt {2} \sqrt {b} \sqrt [4]{a^2-b^2} \sqrt {\sin (c+d x)}+b \sin (c+d x)\right )\right )}{4 \sqrt {2} \sqrt {b} \left (a^2-b^2\right )^{3/4}}+\frac {5 b \left (a^2-b^2\right ) F_1\left (\frac {1}{4};-\frac {1}{2},1;\frac {5}{4};\sin ^2(c+d x),\frac {b^2 \sin ^2(c+d x)}{-a^2+b^2}\right ) \sqrt {\sin (c+d x)} \sqrt {1-\sin ^2(c+d x)}}{\left (-5 \left (a^2-b^2\right ) F_1\left (\frac {1}{4};-\frac {1}{2},1;\frac {5}{4};\sin ^2(c+d x),\frac {b^2 \sin ^2(c+d x)}{-a^2+b^2}\right )+2 \left (2 b^2 F_1\left (\frac {5}{4};-\frac {1}{2},2;\frac {9}{4};\sin ^2(c+d x),\frac {b^2 \sin ^2(c+d x)}{-a^2+b^2}\right )+\left (a^2-b^2\right ) F_1\left (\frac {5}{4};\frac {1}{2},1;\frac {9}{4};\sin ^2(c+d x),\frac {b^2 \sin ^2(c+d x)}{-a^2+b^2}\right )\right ) \sin ^2(c+d x)\right ) \left (a^2+b^2 \left (-1+\sin ^2(c+d x)\right )\right )}\right )}{b d (a+b \cos (c+d x)) \sin ^{\frac {3}{2}}(c+d x) \left (1-\sin ^2(c+d x)\right )} \end {gather*}

Warning: Unable to verify antiderivative.

[In]

Integrate[(e*Sin[c + d*x])^(3/2)/(a + b*Cos[c + d*x])^2,x]

[Out]

(Csc[c + d*x]*(e*Sin[c + d*x])^(3/2))/(b*d*(a + b*Cos[c + d*x])) - (Cos[c + d*x]^2*(e*Sin[c + d*x])^(3/2)*(a +
 b*Sqrt[1 - Sin[c + d*x]^2])*((a*(-2*ArcTan[1 - (Sqrt[2]*Sqrt[b]*Sqrt[Sin[c + d*x]])/(a^2 - b^2)^(1/4)] + 2*Ar
cTan[1 + (Sqrt[2]*Sqrt[b]*Sqrt[Sin[c + d*x]])/(a^2 - b^2)^(1/4)] - Log[Sqrt[a^2 - b^2] - Sqrt[2]*Sqrt[b]*(a^2
- b^2)^(1/4)*Sqrt[Sin[c + d*x]] + b*Sin[c + d*x]] + Log[Sqrt[a^2 - b^2] + Sqrt[2]*Sqrt[b]*(a^2 - b^2)^(1/4)*Sq
rt[Sin[c + d*x]] + b*Sin[c + d*x]]))/(4*Sqrt[2]*Sqrt[b]*(a^2 - b^2)^(3/4)) + (5*b*(a^2 - b^2)*AppellF1[1/4, -1
/2, 1, 5/4, Sin[c + d*x]^2, (b^2*Sin[c + d*x]^2)/(-a^2 + b^2)]*Sqrt[Sin[c + d*x]]*Sqrt[1 - Sin[c + d*x]^2])/((
-5*(a^2 - b^2)*AppellF1[1/4, -1/2, 1, 5/4, Sin[c + d*x]^2, (b^2*Sin[c + d*x]^2)/(-a^2 + b^2)] + 2*(2*b^2*Appel
lF1[5/4, -1/2, 2, 9/4, Sin[c + d*x]^2, (b^2*Sin[c + d*x]^2)/(-a^2 + b^2)] + (a^2 - b^2)*AppellF1[5/4, 1/2, 1,
9/4, Sin[c + d*x]^2, (b^2*Sin[c + d*x]^2)/(-a^2 + b^2)])*Sin[c + d*x]^2)*(a^2 + b^2*(-1 + Sin[c + d*x]^2)))))/
(b*d*(a + b*Cos[c + d*x])*Sin[c + d*x]^(3/2)*(1 - Sin[c + d*x]^2))

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(1459\) vs. \(2(449)=898\).
time = 0.36, size = 1460, normalized size = 3.49

method result size
default \(\text {Expression too large to display}\) \(1460\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*sin(d*x+c))^(3/2)/(a+b*cos(d*x+c))^2,x,method=_RETURNVERBOSE)

[Out]

(e^3*a/b*(e*sin(d*x+c))^(1/2)/(-b^2*cos(d*x+c)^2*e^2+a^2*e^2)-1/8*e^3*a/b*(e^2*(a^2-b^2)/b^2)^(1/4)/(a^2*e^2-b
^2*e^2)*2^(1/2)*ln((e*sin(d*x+c)+(e^2*(a^2-b^2)/b^2)^(1/4)*(e*sin(d*x+c))^(1/2)*2^(1/2)+(e^2*(a^2-b^2)/b^2)^(1
/2))/(e*sin(d*x+c)-(e^2*(a^2-b^2)/b^2)^(1/4)*(e*sin(d*x+c))^(1/2)*2^(1/2)+(e^2*(a^2-b^2)/b^2)^(1/2)))-1/4*e^3*
a/b*(e^2*(a^2-b^2)/b^2)^(1/4)/(a^2*e^2-b^2*e^2)*2^(1/2)*arctan(2^(1/2)/(e^2*(a^2-b^2)/b^2)^(1/4)*(e*sin(d*x+c)
)^(1/2)+1)-1/4*e^3*a/b*(e^2*(a^2-b^2)/b^2)^(1/4)/(a^2*e^2-b^2*e^2)*2^(1/2)*arctan(2^(1/2)/(e^2*(a^2-b^2)/b^2)^
(1/4)*(e*sin(d*x+c))^(1/2)-1)+(cos(d*x+c)^2*e*sin(d*x+c))^(1/2)*e^2*(1/b^2*(-sin(d*x+c)+1)^(1/2)*(2*sin(d*x+c)
+2)^(1/2)*sin(d*x+c)^(1/2)/(cos(d*x+c)^2*e*sin(d*x+c))^(1/2)*EllipticF((-sin(d*x+c)+1)^(1/2),1/2*2^(1/2))-(-3*
a^2+b^2)/b^2*(-1/2/b/(-a^2+b^2)^(1/2)*(-sin(d*x+c)+1)^(1/2)*(2*sin(d*x+c)+2)^(1/2)*sin(d*x+c)^(1/2)/(cos(d*x+c
)^2*e*sin(d*x+c))^(1/2)/(1-(-a^2+b^2)^(1/2)/b)*EllipticPi((-sin(d*x+c)+1)^(1/2),1/(1-(-a^2+b^2)^(1/2)/b),1/2*2
^(1/2))+1/2/b/(-a^2+b^2)^(1/2)*(-sin(d*x+c)+1)^(1/2)*(2*sin(d*x+c)+2)^(1/2)*sin(d*x+c)^(1/2)/(cos(d*x+c)^2*e*s
in(d*x+c))^(1/2)/(1+(-a^2+b^2)^(1/2)/b)*EllipticPi((-sin(d*x+c)+1)^(1/2),1/(1+(-a^2+b^2)^(1/2)/b),1/2*2^(1/2))
)-2*a^2*(a^2-b^2)/b^2*(1/2*b^2/e/a^2/(a^2-b^2)*(cos(d*x+c)^2*e*sin(d*x+c))^(1/2)/(-cos(d*x+c)^2*b^2+a^2)+1/4/a
^2/(a^2-b^2)*(-sin(d*x+c)+1)^(1/2)*(2*sin(d*x+c)+2)^(1/2)*sin(d*x+c)^(1/2)/(cos(d*x+c)^2*e*sin(d*x+c))^(1/2)*E
llipticF((-sin(d*x+c)+1)^(1/2),1/2*2^(1/2))-5/8/(a^2-b^2)/b/(-a^2+b^2)^(1/2)*(-sin(d*x+c)+1)^(1/2)*(2*sin(d*x+
c)+2)^(1/2)*sin(d*x+c)^(1/2)/(cos(d*x+c)^2*e*sin(d*x+c))^(1/2)/(1-(-a^2+b^2)^(1/2)/b)*EllipticPi((-sin(d*x+c)+
1)^(1/2),1/(1-(-a^2+b^2)^(1/2)/b),1/2*2^(1/2))+1/4/a^2/(a^2-b^2)*b/(-a^2+b^2)^(1/2)*(-sin(d*x+c)+1)^(1/2)*(2*s
in(d*x+c)+2)^(1/2)*sin(d*x+c)^(1/2)/(cos(d*x+c)^2*e*sin(d*x+c))^(1/2)/(1-(-a^2+b^2)^(1/2)/b)*EllipticPi((-sin(
d*x+c)+1)^(1/2),1/(1-(-a^2+b^2)^(1/2)/b),1/2*2^(1/2))+5/8/(a^2-b^2)/b/(-a^2+b^2)^(1/2)*(-sin(d*x+c)+1)^(1/2)*(
2*sin(d*x+c)+2)^(1/2)*sin(d*x+c)^(1/2)/(cos(d*x+c)^2*e*sin(d*x+c))^(1/2)/(1+(-a^2+b^2)^(1/2)/b)*EllipticPi((-s
in(d*x+c)+1)^(1/2),1/(1+(-a^2+b^2)^(1/2)/b),1/2*2^(1/2))-1/4/a^2/(a^2-b^2)*b/(-a^2+b^2)^(1/2)*(-sin(d*x+c)+1)^
(1/2)*(2*sin(d*x+c)+2)^(1/2)*sin(d*x+c)^(1/2)/(cos(d*x+c)^2*e*sin(d*x+c))^(1/2)/(1+(-a^2+b^2)^(1/2)/b)*Ellipti
cPi((-sin(d*x+c)+1)^(1/2),1/(1+(-a^2+b^2)^(1/2)/b),1/2*2^(1/2))))/cos(d*x+c)/(e*sin(d*x+c))^(1/2))/d

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*sin(d*x+c))^(3/2)/(a+b*cos(d*x+c))^2,x, algorithm="maxima")

[Out]

e^(3/2)*integrate(sin(d*x + c)^(3/2)/(b*cos(d*x + c) + a)^2, x)

________________________________________________________________________________________

Fricas [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*sin(d*x+c))^(3/2)/(a+b*cos(d*x+c))^2,x, algorithm="fricas")

[Out]

integral(e^(3/2)*sin(d*x + c)^(3/2)/(b^2*cos(d*x + c)^2 + 2*a*b*cos(d*x + c) + a^2), x)

________________________________________________________________________________________

Sympy [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*sin(d*x+c))**(3/2)/(a+b*cos(d*x+c))**2,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*sin(d*x+c))^(3/2)/(a+b*cos(d*x+c))^2,x, algorithm="giac")

[Out]

integrate(e^(3/2)*sin(d*x + c)^(3/2)/(b*cos(d*x + c) + a)^2, x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {{\left (e\,\sin \left (c+d\,x\right )\right )}^{3/2}}{{\left (a+b\,\cos \left (c+d\,x\right )\right )}^2} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*sin(c + d*x))^(3/2)/(a + b*cos(c + d*x))^2,x)

[Out]

int((e*sin(c + d*x))^(3/2)/(a + b*cos(c + d*x))^2, x)

________________________________________________________________________________________